
 
 

 
Mathematical Modelling of Avascular 

Tumour Growth with Irradiation 
 

 
 
 
 

Andy Nong (20618952) 
Vincent Shadbolt (20617236) 

 
 
 

 
 
 
 

University of Waterloo 
Faculty of Science 

Department of Biology Cross-Listed with Applied Mathematics 
 
 
 
 
 
 
 
 
 

AMATH/BIOL 382 
Brian Ingalls 

April 12, 2018 
 

 

 



 

 
Abstract 
 

Cancer is a torturous group of diseases that affects the lives of people all over the world.                                 
Patients and caregivers alike suffer on a daily basis and will continue to do so should research                                 
not be furthered. Thus, studying cancer’s development and behaviour is invaluable towards                       
improving the quality of life of patients, family members, and clinicians as a whole. Cancerous                             
tumours in particular go through a gestation period known as avascular growth: a biological                           
phenomenon that can be modeled with standard diffusion equation models. Sherratt-Chaplain                     
then fabricated a more detailed model, which utilizes partial differential equations of cell                         
concentrations and growth changing factors such as mitosis, quiescence, necrosis and nutrient                       
supply. This model was recreated and parameters from past experiments conducted by                       
Keng-Cheng Ang were employed to confirm growth patterns. The model was then expanded                         
upon to account for irradiation of the diseased site; allowing for the discussion of optimal                             
radiation treatment intervals. As most treatment methods rarely take into account dynamic                       
growth or inherent response of the tumour, treatment could be amended on a per-patient basis                             
with an overall reduction in recovery time and increased patient quality of life. 
 
1 Introduction 

 
Cancer is one of  the leading causes of death for many countries around the globe; 

including Canada where it is responsible for more than 30% of all casualties within the country 
[1]. Due to this high mortality rate, it has become one of the largest fields of study in the 
medical industry and accounts for millions of dollars yearly. Clearly defined, cancer is a group of 
diseases whereby abnormal cells rapidly and uncontrollably divide, gradually invading 
surrounding body tissue - a clinical process known as metastasizing [1]. Under normal 
circumstances, healthy cells in the body go through controlled life stages comprised of growth, 
division, and death. However, there are times where a cell deviates from this controlled manner 
due to failed apoptosis which results in unregulated growth and division as to form a lump or 
mass called a tumour. Such tumours can be defined as either benign or malignant, with the 
latter of the two containing the cancerous cells that can undergo metastasis as previously 
described. In the case where multiple malignant tumours are present, they can be classified as 
the original tumour and its spread derivatives known as metastases. 

The study of such tumours’ growth has been recorded in experiment whereby they 
were grown in vitro, or in a glass petri dish with a nutrient rich medium [4]. The tumours were 
observed to be growing as a tiny spheroid that was only several millimetres thick in diameter. 
As seen in Figure 1, the tumour spheroid is made up of multiple tiers of different cells. This can 
be explained as an initial ball of proliferating, or rapidly dividing, cells that expands outward. As 
the cells at the center of this mass begin receiving less nutrients, they undergo a process 
known as quiescence and become quiescent cells as a result. Quiescent cells are living cell that 
are not currently dividing due to lack of nutrients, but with reintroduction, can recover such 
ability. While outward growth continues, quiescent cells at the center of the tumour undergo 
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necrosis due to severe nutrient deficiency and form the necrotic core of the tumour. The 
necrotic core is incapable of division or motility regardless of any nutrient influx. 
 

 
Figure 1: Illustration of avascular tumour with dark outer layer of proliferating cells, inner white layer 

of quiescent cells, and grey necrotic core; 1.4 mm in diameter [4]. 
 
During the early stages of tumour spheroid development, it goes through a gestation period of 
avascular growth. Here, it has yet to form an internal circulatory structure of blood vessels and 
thus grows explicitly on external nutrient concentrations [4]. This paper will focus on modelling 
tumour growth during this stage and will not account for already vascularized masses.   
 
2 Sherratt-Chaplain Model 
 

Modelling  tumours with differential equations is a fundamental method that is a critical 
to cancer research and there is a history of modelling avascular tumour growth in the past 
century under various approaches such as those presented by Adam and Greenspan [2], [3]. 
The model employed in this paper is that of Sherratt-Chaplain who published their findings in 
2001. Despite being published at the beginning of the 21st century, the model is the most 
modern and experimentally founded. It incorporates the three different cell types as continuous 
cell densities on a positive number line, the cell motility, and the nutrient supply in vivo, or in the 
body; providing a more realistic scenario for avascular tumour growth [4]. Note that any 
deviations made from this model are noted further in the paper. 
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2.1 The Model 
 

The cell densities of proliferating, quiescent, and necrotic cells will be respectively 
denoted as p(x,t), q(x,t), and n(x,t) where x represents the one dimensional spatial coordinate 
and t represents time. A diagram for this model is depicted below in Figure 2. 

 
Figure 2: Sherratt-Chaplain Model Diagram of Avascular Tumour Growth 

 
As previously mentioned, the model incorporates cell motility which are represented by 
movement terms below for proliferating and quiescent cells respectively. 

 
These cell motility terms are based off the concept that “the presence of a cell of one type limits 
the movement of a cell of the other type from moving” [4] known as contact inhibition of 
migration. They are derived under the safe assumption that proliferating and quiescent cells 
have equal motility and that the overall viable cell flux is given by . Note that necrotic(p )∂

∂x + q  
cells do not have a movement term because they are non-living and thus non-motile. 
Additionally, the use of a nutrient supply, c(x,t), affects the rates of cellular conversion between 
proliferating, quiescent, and necrotic as to get the following reduced model equations. 
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In this model the value of ‘1’ in equation 1 describes the closely compacted population of cells 
within the tumour, alpha, , in equation 4 represents the buffer between the cells and theα  
external nutrients whereby a lower value corresponds to increased nutrient access, and 
gamma, , represents the in vivo conditions surrounding the tumour. Note that  both alpha andγ  
gamma are dimensionless parameters. 

Using forward differencing for time and central differencing for space on the reduced 
model equations, the following partial differential equations (PDEs) are obtained: 

 
where 

 
 
Here,  in equations 5 through 7 refers to total number of time steps and  within equationstΔ xΔ  
9 and 10, refers to the total number space intervals. Furthering this, the superscript j represents 
the current time index and the subscript i represents the current one dimensional space position 
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for the dependent variable. For example, the term  would refer to the density of proliferatingpji  
cells at time j and position i. 
 
2.2 Cellular Conversion Rates and Initial/Boundary Conditions 
 

The functional forms representing the rates of mitosis, quiescence, and necrosis within 
the model are described by equations 12 - 14 respectively. 

 
These were rates were formulated by Sherratt-Chaplain with the exception of g(c) 

which follows Gompertz Rule instead due to its more realistic, non-linear, approximation [5]. 
Beta, , in equation 14 is another dimensionless parameter similar to that of  and that actsβ α γ  
as the scaling coefficient for the rate of mitosis. Note that functions f(c) and h(c) are considered 
to be decreasing functions, as they do not contribute to the proliferating cell density whereas 
g(c) is increasing under the same pretense. It is also assumed that the rate of quiescence is 
greater than that of the rate of necrosis such that f(c) > h(c).  

Furthermore, at time t = 0, the initial conditions are defined as ,(x, ) n(x, ) 0q 0 =  0 =  
, and the proliferating cell density decreases exponentially as x increases such that(x, )c 0 = 1  

. The boundary conditions at  and as  are:(x, )p 0 = e−0.1x x = 0 x → ∞  

 
These boundary conditions ensure the curves approach zero at both extremes. Note that x 
cannot go to infinity due to computational limits and thus x-values were set to be sufficiently 
large in the simulations. 
 
2.3 Simulation 
 

Equations 5 through 14 are defined in MATLAB with the initial and boundary conditions 
detailed above to simulate avascular tumour growth. For the sake of space, the series of data 
being shared is strictly based on , , and  as these parameter values were.9α = 0 .5β = 0 0γ = 1  
found to be best at reflecting experimental trials [6]; showing the most credible results. The 
MATLAB program used for these simulations can be found in Appendix A with special thanks 
to Keng-Cheng Ang for providing the preliminary code outline [7]. The resulting plots can be 
seen in Figures 4 and 5 below.  
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Figure 4: Cell Density Plots for Proliferating, Quiescent, and Necrotic cell populations in regards to a 

one dimensional space position. The family of curves seen on each plot are in regards to 
increasing time frames, from left to right, at times t = 0, 2, 4, …, 32 

 

 
Figure 5: Superimposed Cell Density Plots from times t = 15, 16, 18, …. 32 
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Observing the plots, it is clear that a greater population of proliferating cells exist on the 
tumours exterior followed by a corresponding population of quiescent cells. As time progresses, 
a growing necrotic core is also seen to be developing within the tumour which matches the 
three layer depiction of an avascular tumour in Figure 1. What is also seen here is pure 
expansion of the tumour with no regression as there is no loss in nutrient levels nor any therapy 
applied.  

Assuming radial symmetry, the positive number lines of the cell densities can form 
images of the tumour in 2D or even 3D space at any time t. To do so, a value is set in relation to 
each of the cell densities at coordinate x to represent the number of cells. This value then 
dictates the number of points to plot which are then randomly distributed using the MATLAB 
rand() function on the circumference of a circle of radius x at an angle  between 0 and .θ π2  
This is repeated for each time interval and an example set of images can be seen in Figure 6. 
 

 

 
Figure 6: 2D images of simulated avascular tumour growth at time t = 8, 16, 24, and 32 with cyan 

representing proliferating, red as quiescent, and black as necrotic cells . 
 

These 2D images further support what is observed in the plots with the three layers of 
proliferating, followed by quiescent, then necrotic cells as time progresses. The program 
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provided in Appendix A overlays these images on one another; forming an animation of 
avascular tumour growth.  
 
3 Novel Extension: Chemotherapy 
 

With the model now clearly defined, the extension applied is treatment in the form of 
chemotherapy. As noted before, the tumour is very small at this point, at roughly 1.4mm, and 
the typical removal method via surgery is not realistic nor cost efficient. As a result, 
chemotherapy is generally used as an alternative treatment. Chemotherapy is a type of drug 
that targets rapidly dividing cells (i.e. proliferating cells) and is applied in numerous ways [8]. 
The goal of the therapy is to stop the expansion of cancer cells, however, it is considered as a 
systemic therapy in that it eventually impacts the entire body. This results in side effects 
including, but not limited to, the destruction of blood cells, platelets, hair follicles, and even the 
stomach lining [9]. Despite this, it is evidently one of the best treatments methods available and 
is thus important to integrate into tumour analysis. To introduce chemotherapy into the model, 
three main cases were considered. 
 
3.1  Case A - Ideal  
 

The ideal case is based off introducing the dosage coefficient, , to directly impedeξ  
proliferating cell density [9]. This extension is shown here as ‘ ’ in equation 1.1. Note thatp− ξ  
the  parameter is between 0 and 1 inclusive in regards to dosage intensity whereby 1 is theξ  
strongest dosage possible. 

 
 

3.2 Case B - Probabilistic 
 

However, due to the simplicity of Case A’s assumption of direct impedance, it was 
highly unrealistic. Thus, Case A was further expanded to incorporate proliferating cell survival 
rate as a function of the dosage coefficient, noted here as equation 15 [10]. The  and  termsα β  
are in reference to the same dimensionless radiobiological parameters defined previously. 
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3.3 Case C - Dormancy  
 

The final Case, C, again expands on Case B in that it also considers the dormancy of 
quiescent cells. As mentioned, quiescent cells are capable of becoming active dividing cells 
again given sufficient amount of nutrients, however the original reduced model considered such 
occurrences to be negligible as the tumour continued to rapidly expand. For real-world 
behaviour, Case C accounts for these events in addition to the probabilistic behaviour of Case 
B. A new model diagram was designed and is shown in Figure 7, where chemotherapy is 
formally defined as only affecting the proliferating cells and the quiescence reaction f(c) is now 
reversible. 
 

 
Figure 7: New Avascular Tumour Growth Diagram with Irradiation from Chemotherapy 

 
From this new diagram, the ‘ ’ terms were added to equations 1.3 and 2.1 below.(c)qf  
 

 
 

Note that an assumption was made whereby equations 1.3 and 2.1 are only applicable when 
the proliferating cell density is less than or equal to that of the quiescent cell density within the 
same time frame. 
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3.4 Findings 
 

For the sake of space, the plots and images provided here are that of a hyperbolic 
dosage of 1 to maximize visibility of the impact. All other parameters were maintained at the 
same value for consistency. The following plots shown in Figure 8 are generated from 
treatments A through C as time progresses. Note that these plots only consider two time-steps 
prior to treatment being applied.  
 

 
Figure 8: Cell Density Plots of Case A, B, and C respectively from times t = 15, 16, 18, …. 32 

 
As with the original, these cell density graphs were further illustrated as 2D images, as 

shown in Figure 9, for better analysis. 

 
 

Figure 9: 2D images of simulated avascular tumour growth undergoing treatment A, B, and C 
respectively at time t = 64. 

 
It is observed that after t = 16, there is a drastic decrease in cellular density and the 

transitions to successive curves on the right are much less pronounced. There is also no 
regression of the tumour as the growth has only been stunted by the irradiation. Additionally, it 
can be seen that the amount of proliferating cells increases with each successive case, which 
corresponds to the introduction of the probability term as well as the reversible quiescence 
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reaction. Furthermore, the cell density slopes are much more gradual in Case C, demonstrating 
the conversion of proliferating to quiescent and vice versa both before, and during treatment. 

To elaborate, in case A, there is near instantaneous proliferation death which results in a 
high density of both quiescent and necrotic cells and a thin layer of proliferating cells in 
comparison to that of the other cases. Following this, in Case B, there is a slightly thicker layer 
of proliferating cells, which accounts for the probabilistic behaviour, however there is still a very 
high density of quiescent cells. Finally, in case C, there is both the greatest amount of 
proliferating and lowest amount of quiescent cells which will greatly increase the effectiveness 
of the treatment. In particular, as quiescent cells are reverted back to a proliferative state, which 
accounts for the lower quiescent cell count, the applied treatment was able to destroy them as 
well as the already proliferative cells; resulting in a much higher necrotic density overall. 
 
4 Limitations 
 

The main limitations in regards to Case C were the assumptions that had to be made. It 
was first assumed that the rate of reverse quiescence was the same as forward quiescence in 
the original model. Also, the assumption of reverse quiescence only occurring when 
proliferation cell density is equal to, or less than, the quiescent cell density is simply a rough 
estimation. Neither assumptions have any experimental findings backing their usage.  

Moreover, avascular tumours are very small and the likeliness of using this treatment 
directly on a tumour is rare, not to mention the difficulty of identifying a tumour so small. 
However, it is possible that this treatment could be considered for early metastases growth 
after the original tumour has been removed. It should be noted that such a situation could vary 
from what has been done in this paper, such as changes in nutrient flow, as the model only 
assumes the conditions of a brand new and singular forming tumour within a natural body. 
Likewise, avascularity means that the models and methods explored here cannot applied to 
later stages of vascular tumour growth. 

Another limitation is the fact that chemotherapy directly impedes only proliferating cells 
and not quiescent cells, so the one time dosage shown in the findings is not sufficient to 
completely stunt the tumour and growth would be possible once treatment has ended. The 
dosage intensity value of 1, through effective in treating the tumour, can also be considered to 
be fatal for the patient as it would not only affect the tumour but all healthy cells as well. The 
side effects on the body were not measured in the model simulations but should be held in high 
regards in determining the best dosage coefficient and frequency of treatment.  
 
5 Plausible Benefits 
 

Despite such limitations however, there are still many plausible benefits that could arise 
from the results found in this paper. The most important benefit being that of optimizing 
treatment rate and dosage. Currently, the general treatment regimen for tumours is based on 
an empirical method, that is, it’s based on observation rather than experimental data. Instead, 
by modelling tumour growth under specific dosages at particular frequencies, a refined 
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medicinal regime could be derived as to minimize the physical symptoms of irradiation; saving 
resources and increasing the overall quality of life for all parties.  

Beyond this, being able to model and visualize the growth patterns in MATLAB allows 
for additional experimental study into tumour behavior without the necessity for live growth. 
This suggests that experiments could be run in a matter of minutes rather than over weeks or 
months; cutting costs and reducing the associated risk of incubating cancerous diseases. 
Mathematical models could be the answer for truly understanding cancer in a timely fashion 
without the need for extensive funding. 

 
6 Conclusion 
 

This paper explored avascular tumour growth as described by the Sherratt-Chaplain 
reduced model. The model equations are solved with finite differencing and modeled in 
MATLAB to explore various quantitative results in the form of cell density graphs and tumour 
growth images assuming radial symmetry.  

The novel extension implemented onto the growth model was the effects of irradiation 
via method of chemotherapy. Three different cases were considered, each expanding upon the 
last in terms of modelling realism. The irradiation clauses all stunted tumour growth at various 
rates as expected, with the ability to explore such rates at different dosage levels. 

The limitations of the model and the irradiation methods were considered and the 
benefits of using MATLAB to model were considered. Clinical implementation was also 
explored after irradiation cases showed time frames that can be worked with.   
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8 Appendix A 
 
The code used for each of the simulations can be found below. Note that this was run on 
Matlab 2016a and may need to be altered for different versions. Instructions are included as 
comments within the code. 

classdef TumourGrowth < handle 
    % Avascular tumour growth with radial symmetry as adapted 
    % from the Sherratt-Chaplain model. It accounts for cell motility in 
    % both proliferating and quiescent cellular layers along with cell 
    % necrosis. Treatment is applied halfway through the simulation if 
    % applicable 
   
    %Instructions: 
    %Save code as ‘TumourGrowth.m’ 
    %Change MATLAB directory to ‘TumourGrowth.m’ save location 
    %Run ‘x = TumourGrowth()’ to initialize object 
    %Run 'x.simulate(0)' for Untreated growth 
    %Run 'x.simulate(1)' for Ideal Treatment growth 
    %Run 'x.simulate(2)' for Probabilistic Treatment growth 
    %Run 'x.simulate(3)' for Realistic Treatment growth 
   
    properties (Access = public) 
        alpha = 0.9; %buffer between cells and nutrients - between 0.1 and 1 
        beta = 0.5; %rate coefficient for mitosis - between 0.1 and 1 
        gamma = 10; %in vivo conditions surrounding cells - greater than proliferating density 
        dx = 1; %maximum step size in spatial coordinate 
        X = 420; %spacial coordinate boundary 
        Nx; %Total step count for spatial axes 
        dt = 0.004; %maximum step size in time 
        T = 16; %total tumour growth time 
        Nt; %Total step count for time index 
        c0 = 1; %initial nutrient count - between 0 and 1  
        xi = 1; %irradiation level - between 0 and 1 
        animationSteps= 125; %Resolution of 64 
        %Change animationSteps as appropriate. The lower the number, the higher 
        %the resolution but the more intensive the simulation: 
        %16/(2*0.250) = 32 vs. 16/(2*0.125) = 64 vs. 16/(2*0.0005) = 1600 
    end 
   
    methods (Static) 
        function result = f(c) 
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            %Determines rate of quiescence based off current nutrient value 
            result = 0.5*(1-tanh(4*c-2)); 
        end 
    end 
   
    methods (Access = public) 
        function result = h(TG,c) 
            %Determines rate of necrosis based off current nutrient value and quiescence 
            result = 0.5*TG.f(c); 
        end 
  
        function result = g(TG,c) 
            %Determines rate of proliferation based off current nutrient value and beta 
            result = TG.beta*exp(TG.beta*c); 
        end 
   
        function simulate(TG, treatment) 
            %Initializes all required arrays / values and calls all simulation functions 
   
            x  = [TG.dx:TG.dx:TG.X]; %Spatial axes  
            TG.Nx = round(TG.X/TG.dx); %Total Spatial Steps 
            TG.Nt = 2*round(TG.T/TG.dt); %Total Time - *2 accounts for treatment 
            p = zeros(1,TG.Nx); %Proliferating cell count in x-direction 
            nextp = zeros(1,TG.Nx); 
            q = zeros(1,TG.Nx); %Quiescent cell count in x-direction 
            nextq = zeros(1,TG.Nx); 
            n = zeros(1,TG.Nx); %Necrotic cell count in x-direction 
            nextn = zeros(1,TG.Nx); 
            u = zeros(1,TG.Nx); %From forward differencing equations 
            v = zeros(1,TG.Nx); %From forward differencing equations 
            r = zeros(1,TG.Nx); %To simplify forward differencing equations 
            c = zeros(1,TG.Nx); %Nutrient count in x-direction 
            P = zeros(TG.Nt,TG.Nx); %Proliferating Cell density at x at t 
            Q = zeros(TG.Nt,TG.Nx); %Quiescent Cell density at x at t 
            N = zeros(TG.Nt,TG.Nx); %Necrotic Cell density at x at t 
   
            p = exp(-0.1.*x); %Initial Proliferating Cell Density 
   
            %Print selected simulation type 
            if treatment == 1 
                disp('Ideal Treatment') 
            elseif treatment == 2 
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                disp('Probability Treatment') 
            elseif treatment == 3 
                disp('Realistic Treatment') 
            else  
                disp('Untreated') 
            end 
   
            %Set initial values for dynamic equations as cell of arrays 
            fdm = {p; nextp; q; nextq; n; nextn; u; v; r; c}; 
            cellDInit = {P; Q; N}; 
   
            %Run dynamics 
            cellD = TG.dynamics(fdm, cellDInit, treatment); 
   
            %Plot Growth Figures  
            TG.plot(cellD); 
   
            %Run Animation 
            TG.animate(cellD); 
        end 
   
        function result = dynamics(TG, fdm, cellDInit, treatment) 
            %Run dynamic equations that were derived through forward 
            %differencing of Sherratt-Chaplain model. Returns array of 
            %cells corresponding to cellular densities 
   
            %Seperate arrays and initial values from passed in data 
            p = cell2mat(fdm(1)); nextp = cell2mat(fdm(2));  
            q = cell2mat(fdm(3)); nextq = cell2mat(fdm(4));  
            n = cell2mat(fdm(5)); nextn = cell2mat(fdm(6)); 
            u = cell2mat(fdm(7)); v = cell2mat(fdm(8)); r = cell2mat(fdm(9)); 
            c = cell2mat(fdm(10)); 
            P = cell2mat(cellDInit(1));  
            Q = cell2mat(cellDInit(2)); 
            N = cell2mat(cellDInit(3)); 
   
            for k=1:TG.Nt 
               r = p + q; 
               c = (TG.c0.*TG.gamma./(TG.gamma+p)).*(1-TG.alpha.*(p+q+n)); 
               for i=2:TG.Nx-1 
                  u(i) = ((p(i+1)-p(i-1))*r(i)*(r(i+1)-r(i-1))+ ... 
                         4*p(i)*r(i)*(r(i+1)-2*r(i)+r(i-1))- ... 
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                         p(i)*(r(i+1)-r(i-1))^2)/(2*(TG.dx*r(i))^2); 
                  v(i) = ((q(i+1)-q(i-1))*r(i)*(r(i+1)-r(i-1))+ ... 
                         4*q(i)*r(i)*(r(i+1)-2*r(i)+r(i-1))- ... 
                         q(i)*(r(i+1)-r(i-1))^2)/(2*(TG.dx*r(i))^2); 
               end 
               if k > TG.Nt/2 %Apply Treatment halfway through simulation 
                   if treatment == 1 %Ideal Treatment (Case A) 
                       nextp=p+TG.dt.*(u+TG.g(c).*p.*(1-(p+q+n))-TG.f(c).*p-TG.xi*p); 
                       nextq = q+TG.dt.*(v+TG.f(c).*p-TG.h(c).*q); 
                   elseif treatment == 2 %Probability Treatment (Case B) 
                       sprob = p*exp(-TG.alpha*TG.xi + TG.beta*TG.xi^2); 
                       nextp=p+TG.dt.*(u+TG.g(c).*p.*(1-(p+q+n))-TG.f(c).*p-sprob); 
                       nextq = q+TG.dt.*(v+TG.f(c).*p-TG.h(c).*q); 
                   elseif treatment == 3 %Realistic Treatment (Case C) 
                       sprob = p*exp(-TG.alpha*TG.xi + TG.beta*TG.xi^2); 
                       if max(P(k,:)) <= max(Q(k,:)) %Set Quiescence as Reversible Reaction 
                           nextp=p+TG.dt.*(u+TG.g(c).*p.*(1-(p+q+n))-TG.f(c).*p+TG.f(c).*q-sprob); 
                           nextq=q+TG.dt.*(v+TG.f(c).*p-TG.f(c).*q-TG.h(c).*q); 
                       else %Keep Quiescence as irreversible until Proliferating cell density lowers 
                           nextp=p+TG.dt.*(u+TG.g(c).*p.*(1-(p+q+n))-TG.f(c).*p-sprob); 
                           nextq=q+TG.dt.*(v+TG.f(c).*p-TG.h(c).*q); 
                       end 
                   else %Untreated (Original) 
                       nextp=p+TG.dt.*(u+TG.g(c).*p.*(1-(p+q+n))-TG.f(c).*p); 
                       nextq = q+TG.dt.*(v+TG.f(c).*p-TG.h(c).*q); 
                   end 
               elseif treatment == 3 %Realistic Growth until Treatment 3 begins 
                   if max(P(k,:)) <= max(Q(k,:)) 
                       nextp=p+TG.dt.*(u+TG.g(c).*p.*(1-(p+q+n))-TG.f(c).*p+TG.f(c).*q); 
                       nextq=q+TG.dt.*(v+TG.f(c).*p-TG.f(c).*q-TG.h(c).*q); 
                   else 
                       nextp=p+TG.dt.*(u+TG.g(c).*p.*(1-(p+q+n))-TG.f(c).*p); 
                       nextq=q+TG.dt.*(v+TG.f(c).*p-TG.h(c).*q); 
                   end 
               else %Original Growth until Treatment 0, 1 or 2 begins 
                    nextp=p+TG.dt.*(u+TG.g(c).*p.*(1-(p+q+n))-TG.f(c).*p); 
                    nextq = q+TG.dt.*(v+TG.f(c).*p-TG.h(c).*q); 
               end 
               nextn = n+TG.dt.*(TG.h(c).*q); 
               p = nextp; 
               q = nextq; 
               n = nextn; 
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               P(k,:) = p;  
               Q(k,:) = q;  
               N(k,:) = n; 
            end 
            result = {P; Q; N}; 
        end 
   
        function plot(TG, cellD) 
            %Plot all Cell Densities for analysis 
   
            %Seperate Cell Densities from passed in data 
            P = cell2mat(cellD(1));  
            Q = cell2mat(cellD(2)); 
            N = cell2mat(cellD(3)); 
   
            %Plot Proliferating Cell Density 
            figure(1) 
            for n=1:500:TG.Nt 
                plot(P(n,:),'k','LineWidth',1.2); hold on; 
                ylabel('Proliferating Cell Density') 
                xlabel('Distance from Core') 
            end 
            axis([0 540 0 1]); 
   
            %Plot Quiescent Cell Density 
            figure(2) 
            for n=1:500:TG.Nt 
                plot(Q(n,:),'k','LineWidth',1.2); hold on; 
                ylabel('Quiescent Cell Density') 
                xlabel('Distance from Core') 
            end 
            axis([0 540 0 1]); 
   
            %Plot Necrotic Cell Density 
            figure(3) 
            for n=1:500:TG.Nt 
                plot(N(n,:),'k','LineWidth',1.2); hold on; 
                ylabel('Necrotic Cell Density') 
                xlabel('Distance from Core') 
            end 
            axis([0 540 0 1]); 
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            %Plot Superimposed Cell Densities (Proliferating, Quiescent and 
            %Necrotic) from just before treatment to treatment end 
            figure(4) 
            for n=3500:500:TG.Nt 
                plot(P(n,:),'c','LineWidth',1.2); hold on; 
                plot(Q(n,:),'r','LineWidth',1.2); hold on; 
                plot(N(n,:),'k','LineWidth',1.2); hold on; 
            end 
            ylabel('Cell Density') 
            xlabel('Distance from Core') 
            legend('Proliferating Cells', 'Quiescent Cells', 'Necrotic Cells') 
            axis([0 540 0 1]); 
        end 
   
        function animate(TG, cellD) 
            %Run animation (assuming radial symmetry) of growth pattern and 
            %save each animation step as an image 
   
            %Seperate Cell Densities from passed in data 
            P = cell2mat(cellD(1));  
            Q = cell2mat(cellD(2)); 
            N = cell2mat(cellD(3)); 
   
            %Animate 
            rand('state', sum(100*clock)); 
            prefix='t'; %prefix for images 
            Nm=0; %keep track of image number 
            figure(5) 
            for n=1:TG.animationSteps:TG.Nt 
                Nm=Nm+1; 
                for i=1:TG.Nx 
                    %Determine number of cells at space i at time n to 4 decimal places and plot 
randomly on radius i 
                    tP=round(P(n,i),4);  
                    tQ=round(Q(n,i),4);  
                    tN=round(N(n,i),4); 
                    for m=0.0001:tP 
                        theta=2*pi*rand(); 
                        plot(i*sin(theta),i*cos(theta),'c.'); hold on; 
                    end 
                    for m=0.0001:tQ 
                        theta=2*pi*rand(); 
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                        plot(i*sin(theta),i*cos(theta),'r.'); hold on; 
                    end 
                    for m=0.0001:tN 
                        theta=2*pi*rand(); 
                        plot(i*sin(theta),i*cos(theta),'k.'); hold on; 
                    end 
                    axis square 
                    axis([-300 300 -300 300]) 
                end 
                %Save plot as image 
                print('-djpeg','-r100',sprintf('%s_%s',prefix,num2str(Nm))); 
            end 
        end 
    end   
end 
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